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Abstract 
The peptide hormone glucagon like peptide GLP -1 has most important actions resulting in glucose lowering 

along with weight loss in patients with type 2 diabetes. As a peptide hormone, GLP -1 has to be administered by 

injection. A few small-molecule agonists to peptide hormone receptors have been described. 

Here we develop a model for credit risk based on a model with stochastic eigen values called principal 

component stochastic covariance. The fourier transform of the Green function of the pricing PDE is, 
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I. INTRODUCTION 
GLP-1 is one of the incretine, is a natural postprandial hormone released in response to nutrient intake and 

acts to stimulate insulin secretion. GLP -1 has attracted much interest as a future treatment for type -2 diabetes 

because it has multiple antidiabetic actions and at the same time, lowers body weight. The compounds were not 

antagonized by the selective GLP-1 receptor antagonist, exendin. Exendin is a fragment of a close analog of 

GLP-1 and must be expected to bind at the orthosteric agonist binding site.   

 The mechanism behind the phenomenon was investigated further in a saturation binding experiment 

measuring the affinity and number of  binding sites for GLP-1 in the absence or presence of compound 2.  

 

II. NOTATIONS 
 Di  Symmetric positive definite matrix 

 Wi  Brownian motion  

 r(t)  Risk free interest rate 

 di(t)   Dividend yield for the i
th

 firm 

  Tr       Trace of a matrix 

 i        Stopping time 

 )(|| ti   Truncating factor 

 

III. THE CREDIT GRADES WISHART PROCESS: 
In Credit Grades model, we assumes that volatility is deterministic. By means of stochastic covariance 

wishart process, we extend credit grades model. A wishart process with integer degree of freedom k is a sum of 

k independent n-dimensional Ornstein –uhlenbeck process.  

  

Consider  k

k

kV 1  as an independent set of Ornstein – Uhlenbeck process.  
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 Where B and R are (n,n ) matrices with R invertible[1,2].  

 Then a wishart process of degree k is defined as  
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 Where 
)(k

tV  is the transpose of the Vector
)(k

tV .  

 Here By using a Ito’s lemma, to find a diffusion SDE for the process tY   
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 Here the term of the SDE contains tY , but the diffusion part contains the terms 
)(k

tV  and 
)'(k

tV . Also 

tY  satisfies the following matrix SDE.,[3]  

  '2
1

2
1'' RdWYYRdWdtBYBYRKRdY ttttttt  ,                                                   …….(1) 

 Where tW  is an n x n standard Brownian motion matrix.  

 

IV. THE DYNAMICS OF THE ASSETS : 

The assets are defined on a probability space  ),,( RF  Where  
0ttF  is the information up to time t 

and R is the risk – natural measure equivalent to the measure P.  

Let us assume that the i
th

 firm’s asset price per share is given by Ai(t).  

Here we review the results regarding the dynamics of the assets with stochastic covariance wishart process.  

Assume the asset’s prices follow the multivariate real – world model,  
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Here the vector  n ...............1  is constant and Di is a symmetric positive definite matrix, the log 

price process has the drift term, 

     dtYDTAdE tiitt  ln    and the Quadratic variation dtYAdV ttt )ln(  

Also we assume that the Brownian motion driving the assets and the Brownian motions driving the wishart 

proves are uncorrelated.  

  0tiYDTr  accounts for risk premium. For the transition distribution of At+h  given At and  tY  We have 
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and the unconditional probability function can be found by Integration over the distribution function of 

ht
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 Now that we have identified the dynamics of the assets, we explain the mechanism of the Credit Grades 

model, As before, we assume that the ith firm’s value At(t) is driven by the dynamics 
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 Where =RR  for some >n-1 and M is a negative definite matrix. 
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V. EQUITY CALL OPTIONS 
The price of a European call option on the equity is calculated by discounting the risk – neutral expectation 

of the payoff at maturity.  

Since        TTiTnTi ii
KSKS 



  |||| ,,  the price of the call option could be rewritten as  Vcall (t, 

Y, Si, k) 
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 The price of a single name derivative on one of the equities satisfies the partial differential 

equation[4,5].  

Ut + ),( iSYA – rU = 0 

Here the price of an equity call option is given by the PDE is  

    0)()()(
2

1 2
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                               …… (4) 

U(t,0) = 0, U(T,S) = (S-k)
+

, 

where A(Y,S) is the infinitesimal generator of the joint process (S, Y) . 

 

We first joint change the variable by  
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The Fourier transform of the Green’s function of PDE is given by[6]
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Now that we have found the fourier transform of the Green’s function of the pricing PDE, we solve the 

pricing  problem for an equity call option by the method of  images.  
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VI. RESULT 
The price  of  a call option on Sj(t) with maturity date T and strike price k is given by, 
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If in the dynamics of the asset (3), We assume n=1 and for the parameters  
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 Now to find 12  and 22 , we have[8,9,10],  
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Ee is a 2 x2 matrix with  
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Fig. 1 

 

Example 

As per the data the saturation plot and scratched analysis of GLP-1 radio ligand binding to the cloned 

human[7]GLP1 receptor in the absence or presence of compound 2. 

In the saturation plot the presence of compound 2 in GLP-1 is increased then GLP -1 alone is given in fig 2 

 
Fig. 2 

 

VII. CONCLUSION 
The mathematical model also reflects the same effects of GLP-1 receptor in the absence or presence of 

compound 2 in fig 2 which are beautifully fitted with fourier transform of the Greens function of PDE is 

obtained in fig (1). The results matching with the mathwematical and medical report.  
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